

CSS Display Property
CSS display is the most commonly used property and it is used to

change the behavior of the DOM object. Just changing the display

property, we can change the way dom objects and their child

objects act in a browser window.

Display property changes inner and outer display types of a DOM

element:

Outer type: This sets the CSS flow layout or normal flow layout.

These modes are comparable to the default writing mode with

inline and block elements when no style is applied.

Inner type: This sets the layout of the children or child elements.

To use display property in CSS, we can use a single value or two

value display syntax and specify a valid display value for the

property. This value will create a box around the element and the

element will behave depending on the property value specified.

To understand how to use the display in CSS let's look at the syntax

of the display first, then we'll see all the available display properties

in depth.

The formal syntax of display property is:

Selector {display:<value>}

<value>: Can be any valid display value. Can accept inline, block,

inline-block, none, contents, flex, inline-flex, grid, inline-grid, etc.

We can classify display properties into six groups. Display property

can have any value from these six groups.

1. Legacy Values:
These values can be classified into three parts.

Block property:

This makes an element full width and takes as much space

available. It gives the element a minimum required height so

whenever any variant of the block is used, the element will take

full-width space and can no longer behave like an inline element.

This breaks content before and after the block display.

display: block;

display: flex;

display: grid;

In the below example, see how these display properties try to use

available width that's the block behavior.

https://imjignesh.com/how-to-use-display-flex-css/
https://imjignesh.com/how-to-use-display-property-in-css/

Inline properties:

These are mostly used in text content where elements flow in line

with other elements. This is a normal behavior of the text elements.

Like span, strong, em, i, sup, sub, etc. Inline display type does not

break content, instead, the content will be in the same line with

other elements. Adding margin or padding to inline elements

won't push other elements away.

display: inline;

display: inline-flex;

display: inline-grid;

Blocks and inline display values are two default behaviors of the

elements which define the normal flow of the layout. Click through

all the properties in the below example to see it in action.

https://imjignesh.com/how-to-use-display-property-in-css/

Inline-Blocks:

There is a third type of property that uses a combination of inline

and block. They are inline-blocks. Which has properties of both

block elements and useful inline behavior. Inline-blocks are the

most commonly used display property because it flows naturally

and we can use box properties to adjust margins, padding, etc.

inline-blocks creates a Block Formatting Content (BFC). The

creation of a BFC gives you more options to format the content.

There is another property value called flow-root which creates a

BFC on a block, rather than an inline element.

display: inline-block - creates BFC on an inline box

display: flow-root - creates BFC on a block box

See how these both properties create BFC and how they behave

in the below example:

https://imjignesh.com/how-to-use-display-property-in-css/

2. Outside Values:
These display values work on the outer type of the element and

behave as a flow layout.

display: block - It generates a block element box, when used in

the normal flow, It generates line breaks both before and after

the element.

display: inline - It generates one or more inline element boxes.

They don't generate any line breaks anywhere. In normal flow, the

next element will be on the same line if there is space.

Example of display block and inline properties:

https://imjignesh.com/what-is-before-and-after-in-css/
https://imjignesh.com/how-to-use-display-property-in-css/

3. Inside Values:
These display values work on the inner type of the element and

work on the formatting of the context.

flow: it generates a normal flow layout using block and inline

layouts. If its outer display type is inline or run-in, and it is used as a

block or inline formatting context, it generates an inline box.

Otherwise, it generates a block container box.

flow-root: It generates a block element box that creates a new

BFC, defining where the formatting root lies.

table: These elements behave like HTML table elements.

flex: It behaves like a block element and formats its content

according to the flexbox model.

grid: It behaves like a block element and formats its content

according to the grid model.

ruby: It behaves like an inline element and formats its content

according to the ruby formatting model.

https://imjignesh.com/how-to-use-display-flex-css/

Check the below example to see the working of these property

values. Some of them are not compatible with all browsers

just yet.

https://imjignesh.com/how-to-use-display-property-in-css/
https://imjignesh.com/how-to-use-display-property-in-css/
https://imjignesh.com/how-to-use-display-property-in-css/

4. List Item Values:
Display list-item generates a block box for the content and a

separate list-item inline box. The single value of list-item behaves

like a default list item. It can go along with list-style-type and

list-style-position properties.

Display list-item will add a default bullet to the element. This

applies to the entire child and sub-child hierarchy.

https://imjignesh.com/how-to-use-display-property-in-css/

5. Internal Values:
Internal display values are the ones that have complex internal

structures. Its value has meaning only within the defined layout

mode and their child and descendants can act differently for each

of the property values.

table-row-group: This display type makes an element behave like

<tbody> HTML elements.

table-header-group: Makes an element behave like < thead>

HTML elements.

table-footer-group: Makes an element behave like < tfoot> HTML

elements.

table-row: Makes an element behave like < tr> HTML elements.

table-cell: Makes an element behave like < td> HTML elements.

table-column-group: Makes an element behave like < colgroup>

HTML elements.

table-column: Makes an element behave like < col> HTML

elements.

table-caption: Makes an element behave like < caption> HTML

elements.

ruby-base: Makes an element behave like < rb> HTML elements.

ruby-text: Makes an element behave like < rt> HTML elements.

ruby-base-container: Makes an element behave like < rbc>

HTML elements generated as anonymous boxes.

ruby-text-container: Makes an element behave like < rtc> HTML

elements.

In the below example, See how the display table requires its parent

element to be display:table . All the child elements can have any of

the properties discussed above.

https://imjignesh.com/how-to-use-display-property-in-css/
https://imjignesh.com/how-to-use-display-property-in-css/
https://imjignesh.com/how-to-use-display-property-in-css/

As you might have noticed, these properties don't go well with the

outer type. There are some overlapping and some margin issues.

But this is the normal behavior of these properties, Table properties

are used to represent data and don't follow the normal flow.

6. Box Values:
These types of values define if an element should generate a display

box or not. These values can affect accessibility problems if not used

correctly.

contents: display contents don't create any box, instead the

element is replaced by a pseudo-box which is a non-existent box .

At this point in time, the display: contents is not fully supported in

browsers, and remove elements from the accessibility tree ,

making it impossible for screen readers to read.

none: This display property value, removes the element from the

accessibility tree. This will be loaded in the browser but it won't

render the element. This will remove all other properties of the

element by making it invisible. display: none also causes problems

for screen readers as the element simply goes away.

Note: In the below example, you can't see me .

https://imjignesh.com/how-to-use-display-property-in-css/

Global values:
Apart from the above six types of display property values, there are

global values.

display: inherit - This will inherit display property from ti's

parent.

display: initial - This will use the initial value of the display

property. Browser default

display: unset - This will unset the value of the element and set

it to inherit if a parent has inherited values or initial.

Check the default behavior of the display property in the below

example, all the elements have some kind of default display value

applied to them even not defined by CSS. This is can be inspected

by chrome dev tools or firefox debug tools.

https://imjignesh.com/how-css-inheritance-works/
https://imjignesh.com/how-css-override-works/
https://imjignesh.com/how-css-override-works/#jmp_3
https://imjignesh.com/how-to-use-display-property-in-css/

Single Valued and Two value Properties:
As we discussed at the beginning of this article, the display property

affects the outer and inner type of the element, Some browsers

have support for explicitly specifying both the type by using

two-value display syntax. In Level 3 of display specification, we can

specify both the type in display syntax:

Selector{ display: < outer> < inner> }

<outer>: defines values for the box. Can have inline or block

values.

<inner>: defines display values for children. Can have any of the

six types of property value.

If this syntax seems complex, let's understand it with a simple

example,

We set a display value of the grid to an element, like display: grid ,

which means, all of the child elements of the current parent will be

displayed as a grid item and will use the advantage of the grid

model. However, the parent itself will display the value of the block.

So when we specify display: grid , it converts to display: block grid

as a two-value syntax.

Here are some examples explaining how to use display property in

CSS using single value and two value syntax .

Single Value Two-Value Description
block block flow Crates outer block box with a

normal flow inner
inline inline flow Crates outer inline box with a

normal flow inner
inline-block inline

flow-root

Crates outer inline box defining

a BFC
list-item block flow

list-item

Crates outer block box with normal

flow inner and additional marker box
flex block flex Crates outer block box with inner

flex layout
inline-flex inline flex Crates outer inline box with inner

flex layout
grid block grid Crates outer block box with inner

grid layout
inline-grid inline grid Crates outer inline box with inner

grid layout
table block

table

Crates outer block box with inner

table layout
inline-table inline

table

Crates outer inline box with inner

table layout

Display Properties and Accessibility
As discussed before in this article, Some properties like display:

none, display: contents remove the element from the accessibility

tree, This will make the element unavailable for screen readers.

Some elements like tables need to have a display value of the

table to be able to parse correctly in the accessibility tree. If we

use display: block on table elements, it can alter its representation

in the accessibility tree.

Final Words:
If you're using CSS for quite a while, you might be using legacy

values most of the time because they mostly work in all browsers.

However as browsers are being capable, Some of the display

properties are being obsolete and are being replaced by more

modern properties. CSS libraries like Bootstrap have already shifted

from floating block-based layout systems to grid and flex-based

systems. In the future, there might be full support for other display

properties and two-value syntax , but for now, we have plenty of

modern display properties to make our layout more robust.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

